

How musicians' and non-musicians' approaches to gestural representations of sound differ: findings from a motion-capture experiment

Mats Küssner

Department of Music, King's College London

AHRC Research Centre for Musical Performance as Creative Practice

Introduction

Cross-modal correspondences

- louder sounds associated with
 - larger objects
 - greater brightness
 - higher contrast
- higher pitch associated with
 - greater brightness
 - higher elevation in space
 - smaller objects
 - spikier shapes

Where do they come from?

Innate

Introduction

taken from Walker et al., 2010

taken from Ludwig et al., 2011

Learned

– (passive) statistical learning

- metaphor
- specific training

Küssner (2013)

Performance part: sound stimulus 14 (pitch: up-down, amplitude: constant, tempo: decelerando-decelerando)

ppt_55 (non-mus) glo_rho (pitch): 0.5216* glo_rho (loud): 0.3753* rho (pitch): 0.9601* rho (loud): 0.3384* ppt_02 (composer) glo_rho (pitch): 0.9324* glo_rho (loud): 0.5175* rho (pitch): 0.9762* rho (loud): -0.4141* ppt_54 (visual artist) glo_rho (pitch): 0.8773* glo_rho (loud): 0.4169* rho (pitch): 0.9875* rho (loud): 0.0573 ppt_24 (dancer) glo_rho (pitch): 0.4096* glo_rho (loud): [0.1574*] rho (pitch): 0.2433* rho (loud): [0.1104]

Contemplation part: sound stimulus 14 (pitch: up-down, amplitude: constant, tempo: decelerando-decelerando)

ppt_55 (non-mus)

ppt_02 (composer)

ppt_54 (visual artist)

ppt_24 (dancer)

Küssner & Leech-Wilkinson (in press)

Interactions and Asymmetries

- Eitan & Granot (2006)
 - pitch is mapped onto all three spatial axes
 - pitch fall strongly associated with verticality, but pitch rise only weakly so
 - increasing loudness associated with approaching and accelerating motion (but not an ascent), while decreasing loudness associated with moving away and with descending motion.

Eitan & Granot, 2006

 "This article presents an empirical investigation of the ways listeners associate changes in musical parameters with physical space and bodily motion."

Cross-modal correspondences

Research Questions

How does musical training influence gestural cross-modal mappings of musical characteristics?

To what extent does a real-time visualization of the gestures influence these mappings?

Participants

- 64 (32 female, mean age: 29.63 years [SD=12.49])
- 32 musicians (16 female, mean age: 30.09 [SD=13.66])
 - 8 keyboard / wind / string / composer
 - ≥ Grade 8 ABRSM, ≥ 4 hours per week
- 32 non-musicians (16 female, mean age: 29.16 [SD=11.39])
 - ≤ Grade 1 ABRSM, stopped playing more than 6 years ago and never played longer than 2 years

Stimuli

Table 1. Overview of experimental sound stimuli

145	Table 1. Overview of experimental sound stillfull						
No.	Length	Frequency (Note name)	Amplitude	Rate of frequency change			
1	8 sec	constant (D4)	constant	N/A			
2	8 sec	constant (D4)	decreasing - increasing	N/A			
3	8 sec	constant (D4)	increasing - decreasing	N/A			
4	8 sec	up - down (B2–D4–B2)	constant	equal			
5	8 sec	up - down (B2–D4–B2)	constant	decelerando - decelerando			
6	8 sec	up - down (B2–D4–B2)	constant	accelerando - accelerando			
7	8 sec	up - down (B2–D4–B2)	decreasing - increasing	equal			
8	8 sec	up - down (B2–D4–B2)	decreasing - increasing	decelerando - decelerando			
9	8 sec	up - down (B2–D4–B2)	decreasing - increasing	accelerando - accelerando			
10	8 sec	up - down (B2–D4–B2)	increasing - decreasing	equal			
11	8 sec	up - down (B2–D4–B2)	increasing - decreasing	decelerando - decelerando			
12	8 sec	up - down (B2–D4–B2)	increasing - decreasing	accelerando - accelerando			
13	8 sec	down - up (D4-B2-D4)	constant	equal			
14	8 sec	down - up (D4-B2-D4)	constant	decelerando - decelerando			
15	8 sec	down - up (D4-B2-D4)	constant	accelerando - accelerando			
16	8 sec	down - up (D4-B2-D4)	decreasing - increasing	equal			
17	8 sec	down - up (D4-B2-D4)	decreasing - increasing	decelerando - decelerando			
18	8 sec	down - up (D4-B2-D4)	decreasing - increasing	accelerando - accelerando			
19	8 sec	down - up (D4-B2-D4)	increasing - decreasing	equal			
20	8 sec	down - up (D4-B2-D4)	increasing - decreasing	decelerando - decelerando			
21	8 sec	down - up (D4-B2-D4)	increasing - decreasing	accelerando - accelerando			

Gesturing conditions

- Instruction: represent sound gesturally while it is played
- "No Visualization": participants saw a white screen in front of them
- "Visualization": participants saw real-time visualization on screen in front of them
- Participants were presented with the same set of 18 stimuli in both conditions

Analysis

- Global correlations between sound characteristics (pitch, loudness, [time]) and movement (X, Y and Z)
 - resulting in 9 correlation coefficients per participant
- mixed ANOVAs for each sound characteristic with within-subjects factors 'space' and 'vision' and between-subjects factor 'musician'
 - dependent variable: correlation

TIME: main effect of 'space'

PITCH: main effect of 'space'

PITCH: main effect of 'vision':

non-visual: M = .354 (SEM = .016)

visual: M = .325 (SEM = .015)

PITCH: main effect of 'musician':

musician: M = .377 (SEM = .020)

non-mus: M = .302 (SEM = .020)

PITCH: interaction between 'space' and 'musician'

LOUDNESS: main effect of 'space'

LOUDNESS: main effect of 'musician':

musicians: M = .203 (SEM = .011)

non-musicians: M = .171 (SEM = .011)

LOUDNESS: interaction between 'vision' and 'space'

What was the direction of movement that participants used to represent (elapsed) time, pitch and loudness?

TIME: X-AXIS

Mean correlation between time and movement along the x-axis

			non-visual		
			negative (right to left)	positive (left to right)	
Musicians		negative (right to left)	3	3	
	visual		nv:072 (.036)	nv: .100 (.053)	
			v:039 (.030)	v:091 (.059)	
		positive (left to right)	3	23	
			nv: –.297 (.090)	nv: .628 (.367)	
			v: .783 (.105)	v: .593 (.386)	
	ans visual				
Non-musicians		negative (right to left)	8	4	
			nv:310 (.275)	nv: .370 (.356)	
			v:292 (.206)	v: –.082 (.065)	
		positive (left to right)	1	19	
			*nv:166	nv: .586 (.336)	
			*v: .010	v: .630 (.296)	

PITCH: Y-AXIS

- ALL 64 PARTICIPANTS ACHIEVED POSITIVE CORRELATION COEFFICIENTS!
- Main effect of **'vision'** $(M_{nv} = .679, M_{v} = .630)$
- Main effect of 'musician' ($M_{mus} = .758$, $M_{non-mus} = .551$)

- All but 2 non-musicians (nv: -.001, v: -.061 // nv: .223, v: -.018) showed positive correlations in both conditions
- ANOVA with 32 musicians and 30 non-musicians revealed **significant main effect of 'vision'** ($M_{nv} = .335$, $M_{v} = .299$) and **'musician'** ($M_{mus} = .341$, $M_{non-mus} = .293$)

Mean correlation between loudness and movement along the z-axis					
			non-visual		
			negative (backwards)	positive (forwards)	
Musicians		negative	11	3	
			nv: –.158 (.149)	nv: .042 (.026)	
	visual		v:143 (.119)	v:102 (.037)	
	Visual	positive (forwards)	7	11	
			nv:128 (.057)	nv: .165 (.154)	
			v: .190 (.147)	v: .218 (.140)	
Non-musicians		negative	16	5	
		(backwards)	nv: –.161 (.110)	nv: .071 (.042)	
	visual positive (forwards)		v:168 (.102)	v:158 (.103)	
		7	4		
		•	nv:122 (.064)	nv: .062 (.052)	
			v: .138 (.140)	v: .196 (.171)	

Main findings

- Gestural representation of pitch is more consistent and stable (in terms of direction) than gestural representation of time or loudness
- Visual feedback of gestures triggers loudness representation on the z-axis
- Musicians represent pitch and loudness, but not elapsed time, more consistently with arm gestures compared to non-musicians

Limitations

- Participants were forced to use different dimensions for different musical characteristics (i.e. they couldn't use verticality for both pitch and loudness)
 - test musical parameters separately; however, in music they don't occur in isolation
- Forward movement resulted in larger disk
 - future studies should have two conditions (forward movement associated with larger and smaller disk size)

Conclusion

Audio-visuo-spatial mappings with real (as opposed to imagined) bodily movements reveal a very strong association between pitch and height—one that is stronger for the group of musicians and stronger than e.g. between time and left-to-right movement—suggesting that even if pitch-height mappings prove innate, audio-visual correspondences are readily enhanced by cultural factors such as training.

Special thanks to...

...Dan Tidhar for developing the motion capture software.

...CMPCP and the 'Shapes' team (D. Leech-Wilkinson & H. Prior) for their continuous support.

...KCL for a Graduate School Conference Fund Grant.

- Eitan, Z., & Granot, R. Y. (2006). How music moves: musical parameters and listeners' images of motion. *Music Perception*, 23(3), 221-248.
- Küssner, M. B. (2013). Music and shape. *Literary and Linguistic Computing*. Advance Access published January 15, 2013: 10.1093/llc/fqs071.
- Küssner, M. B., & Leech-Wilkinson, D. (in press). Investigating the Influence of Musical Training on Cross-Modal Correspondences and Sensorimotor Skills in a Real-Time Drawing Paradigm. *Psychology of Music*.
- Ludwig, V. U., Adachi, I., & Matsuzawa, T. (2011). Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans. *Proceedings of the National Academy of Sciences*, 108(51), 20661-20665.
- Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2010). Preverbal infants' sensitivity to synaesthetic cross-modality correspondences. *Psychological Science*, *21*(1), 21-25.